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Abstract We study contact processes on open clusters of half space. Our result shows that
the complete convergence theorem holds.
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1 Introduction

Set Z := {0,±1,±2, . . .} and Z
+ := {0,1,2, . . .}. Denote H := Z

d × Z
+ and E := {(x, y) :

‖x − y‖ = 1, x ∈ H, y ∈ H}. That is, (H,E) is the integer lattice of the half space. Run
the Bernoulli bond percolation model on the lattice in the way that each edge is declared
open with probability p and closed with probability 1 − p, where 0 < p ≤ 1. Different
edges receive independent declarations. Delete all closed edges and get a graph C . Call
each connected component of C an open cluster. More formally, we consider the following
probability space. As sample space we take �b = {0,1}E, points of which are represented
as ω = (ω(e) : e ∈ E). The value ω(e) = 0 corresponds to e being closed, and ω(e) = 1
corresponds to e being open. We take F b to be the σ -field of subsets of �b generated by the
finite-dimensional cylinders. Finally, we take product measure with density p on (�b,F b);
this is the measure Pp =∏

e∈E
μe , where μe is Bernoulli measure on {0,1}, given by

μe(ω(e)= 1)= p, μe(ω(e)= 0)= 1− p.

Then

C = C(ω)= (H, {e ∈ E : ω(e)= 1}).
Readers can refer to Grimmett [6] for more background on percolation.
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Then run the contact process on the random graph C . The contact process, introduced
by Harris [7], is a continuous-time Markov process whose state space is the set of all sub-
sets of H. It may be thought of as a model for the spread of infection. Here is a heuristic
description. At each instant of (continuous) time, each site is in one of two states: infected
or healthy. An infected site recovers at rate 1 and a healthy site becomes infected at rate
proportional to the number of its infected neighbors. Formally, ξ = ξ(C)= {ξt (C) : t ≥ 0} is
the contact process on C with transition rates

{
ξt → ξt \ {x} for x ∈ ξt at rate 1,

ξt → ξt ∪ {x} for x /∈ ξt at rate λ · |{y ∈ ξt : (y, x) is open}|,

where λ is a parameter, and | · | denotes the cardinality of a set. Denote by ξA(C) the process
with initial state A. Realize ξ(C) in the probability space (�s,F s ,Pλ). We say ξA survives
if ξA

t �= ∅ for all t ≥ 0, while ξA dies out if there exists t > 0 such that ξA
t = ∅.

If p = 1, then our model reduces to the contact process on the half space. If p < 1, then
C is a random graph. Hence our model is a kind of contact process in a random environment.
It is a special case of Klein [9] with δ ≡ 1 and λ being a Bernoulli random variable. Readers
can refer to Bramson, Durrett & Schonmann [2], Klein [9], Pemantle & Stacey [11] and
Steif & Warfheimer [13] for more information about contact process in a random environ-
ment. For more general surveys on the theory of contact process, we refer the readers to
Bezuidenhout & Grimmett [1], Durrett [3, 4], Griffeath [5] and Liggett [10].

It is well known that the complete convergence theorem holds for the contact process
on Z

d , see Bezuidenhout & Grimmett [1]. Now if Pλ(ξ
0(C) survives) > 0, does (ξ 0

t (C),

t ≥ 0) have a limit distribution? The answer is yes, and we can verify that the complete con-
vergence theorem still holds. Let p∗ be the critical value of the Bernoulli bond percolation
model on H. When p ≤ p∗ there is no infinite open cluster for almost ω, see Sect. 7.3 of
Grimmett [6]. So ξH

t (C) converges weakly to δ∅ for each λ, where δ∅ is the probability mea-
sure putting mass one on ∅. When p > p∗ there exists C∞, a unique infinite open cluster,
of C for almost ω. Denote by νC the upper invariant measure, that is, the weak limit of the
distribution of ξH

t (C) as t→∞. We have the following complete convergence theorem.

Theorem 1.1 For p∗ < p ≤ 1 and λ > 0, there exists �0 ⊆�b with Pp(�0)= 1, such that
for all ω ∈�0 and A⊆H,

ξA
t (C) ⇒ νC · Pλ(ξ

A∩C∞(C) survives)+ δ∅ · Pλ(ξ
A∩C∞(C) dies out)

as t tends to infinity, where ‘⇒’ stands for weak convergence.

Remark Our result applies also to contact processes on open clusters of Bernoulli site per-
colation.

2 Outline of Proof

Our work is enlightened by Bezuidenhout & Grimmett [1]. They construct a space-time box
B = �−L,L�d ×[0, t] such that with high probability, a seed on the bottom is joined within
B to another seed on each of the other 2d + 1 faces of B . However, we construct several
types of space boxes. It is hard for us to describe the construction in simple words. Since C
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is not transitive, we have to be more careful on the construction of boxes in order to apply
‘translation invariance’ of C .

When p = 1, our result can be directly deduced by the argument of Bezuidenhout &
Grimmett [1]. In this paper we only prove the case d = 1 and p < 1. Our technique still
works for higher dimensions d ≥ 2. When d = 1, the lattice (H,E) can be embedded into
the complex plane. Hence we reset H = {a + bi : a ∈ Z, b ∈ Z

+} and E = {(x, y) : x, y ∈
H, |x − y| = 1}, where i = √−1 is the unit imaginary number. Denote by R+ the set of
nonnegative numbers and R+ =R+ ∪{∞}. For a real number a, let [a] be the largest integer
which is no greater than a. For a complex number x, denote by �(x) its real part, and by
�(x) its imaginary part. Let

�a, b� := {x ∈H : min{�(a),�(b)} ≤ �(x)≤max{�(a),�(b)},
min{�(a),�(b)} ≤ �(x)≤max{�(a),�(b)}}.

That is, �a, b� is a site set, which forms the rectangle in H with diagonal sites a and b. Set
Bx(M)= �x −M −M i, x +M +M i� ∩H for x ∈H and M ∈ Z

+.
We shall make abundant use of the graphical representation of the contact process due to

Harris [8]. We follow the notation of Bezuidenhout & Grimmett [1]. Fix C and think of the
process as being imbedded in space-time. Along each ‘time-line’ x × [0,∞) are positioned
‘deaths’ at the points of a Poisson process with intensity 1. For each open edge (x1, x2)

of C , between x1 × [0,∞) and x2 × [0,∞) are positioned edges directed from the first to
the second having centers forming a Poisson process of intensity λ on the set 1

2 (x1 + x2)×
[0,∞). These Poisson processes are taken to be independent of one another. The random
graph obtained from H×[0,∞) by deleting all points at which a death occurs and adding in
all directed edges can be used as a percolation superstructure on which a realization of the
contact process is built. We shall make free use of the language of percolation. For example,
for A,B ⊆ H× [0,∞), we say that A is joined to B if there exist a ∈ A and b ∈ B such
that there exists a path from a to b traversing time-lines in the direction of increasing time
(but crossing no death) and directed edges between such lines; for C ⊆ H × [0,∞), we
say that A is joined to B within C if such a path exists using segments of time-lines lying
entirely in C. But we extend the notion ‘within’ in this paper. For A,B ⊆H× [0,∞) and
C ⊆H, we say that A is joined to B within C if such a path exists using segments of time-
lines lying entirely in C × [0,∞); for D ⊆ E, we say that A is joined to B within D if
such path exists using directed edges having centers lying entirely in D′ × [0,∞), where
D′ = { x1+x2

2 : (x1, x2) ∈D}.
For x ∈H, r ∈ Z

+ and t ∈ [0,∞), we call (x × t)r a horizontal (resp. vertical) seed with
2r + 1 sites if all sites in �x − r, x + r� (resp. �x − r i, x + r i�) are infected at time t . The
word ‘seed’ comes from Grimmett [6]. We say that a horizontal seed (x × s)r is joined to a
vertical seed (y × t)r if �x − r, x + r� × s is joined to z× t for all z ∈ �y − r i, y + r i�.

Denote by Pp

λ a probability measure which satisfies

Pp

λ (·)=
∫

Pλ(ξ(C) ∈ ·)Pp(dω).

Generally, Pp

λ is called the annealed law, Pλ the quenched law. We use the annealed law in
Sects. 3 and 4 to find different kinds of boxes. In Sect. 5, we use the quenched law to prove
Theorem 1.1 by the result of the annealed law.

Suppose p < 1 and Pp

λ (ξ 0 survives) > 0. In Sect. 3, we find large r , such that ξ �−r,r�
survives with large Pp

λ -probability. Next we find two kinds of edge sets: S-boxes and
L-boxes. These edge sets are called boxes since the endpoints of each edge set form a rec-
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Fig. 1 S-box and L-box

Fig. 2 Sample of Åv
1(s, x, i)

tangle on H. We show that with large probability, a horizontal seed on the bottom of each
kind of box is joined to a vertical seed on the right side within the box. See Fig. 1.

In Sect. 4, we first use S-boxes and L-boxes to construct a route (through Algorithm 1) so
that with large probability, a seed in a fixed square is joined by the route to seeds in each of
the other two fixed squares (one above, the other on the right), see Figs. 2 and 3. Next, we use
the renormalization method to construct integrated boxes (through Algorithm 2). Consider
each of the fixed squares as one single point and connect two adjacent points with an ori-
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Fig. 3 Sample of Åv
1(s, x,1)

Fig. 4 Renormalization

ented edge if the seed in the first square is joined to a seed in the second square through Al-
gorithm 1. See Fig. 4 for intuition. We can get that with large probability, a seed in �a, b�×0
is joined within integrated boxes to another seed in �a + cn, b+ cn� × [7Wn/6,11Wn/6]
for any large n. See Proposition 4.1 for details. The proof of Proposition 4.1 is intuitive but
somewhat cumbersome, and is deferred to Appendix 2. The idea is to couple with the ori-
ented site percolation and to transform our problem to the calculation the sum of a sequence
of independent random variables.

Theorem 1.12 of Liggett [10] says that on a locally finite connected graph G, the com-
plete convergence theorem holds if and only if the following two assertions hold:

(i) Pλ(x ∈ lim sup ξA
t (G))= Pλ(ξ

A(G) survives) for all x ∈G and A⊂G;
(ii) liml→∞ lim inft→∞ Pλ(ξ

B0(l)
t (G)∩B0(l) �= ∅)= 1.

In Sect. 5, we check (i) and (ii) for almost all ω. Simply speaking, we iterate the above
construction of integrated boxes four times to get that with large probability, a seed in
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Fig. 5 Strong survival

�a, b�×0 is joined to another seed in �e, f �×[3Wn,∞). See Fig. 5. From this, we get (i).
Extra tricks are needed to check (ii) , which are given in Algorithms 3 and 4. They are
similar to Algorithms 1 and 2. Therefore, we can get that for each n, with large probability a
seed in � ã, b̃�×[0, W̃ ] is joined to another seed in � ẽ, f̃ �×[(n−1)W̃ , (n+1)W̃ ]. Together
with the fact that every remote site cannot be infected in a short time, we get (ii).

Finally, we show some relationship with the contact process on open clusters of the whole
plane in Sect. 6.

3 Construction of S-Boxes and L-Boxes

In this section our aim is to find two kinds of edge sets, S-boxes and L-boxes. We will prove
that with large Pp

λ -probability, a horizontal seed on the bottom of each box is joined within
the box to a vertical seed on the right side. See Fig. 1.

Lemma 3.1 Suppose Pp

λ (ξ 0 survives) > 0 and ε > 0. Then there exists a positive integer r ,
such that

Pp

λ (ξ �−r,r� survives) > 1− ε2

3
. (3.1)

Proof Since Pp

λ (ξ 0 survives) > 0, then

lim
M→∞

Pp

λ (∀t, ξ 0
t ⊂ B0(M))= Pp

λ (ξ 0 dies out) < 1. (3.2)

For fixed M , n (which will be specified later), take x1 < x2 < · · ·< xn such that xk+1− xk ≥
3M for k = 1,2, . . . , n− 1. Then
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Pp

λ (ξ {x1,...,xn} dies out)

≤ Pp

λ (∀i ∀t, ξ
xi
t ⊂ Bxi

(M))+ Pp

λ (∃i ∃t, ξ
xi
t �⊂ Bxi

(M) and ξxi dies out).

Note that by our choice of x1, . . . , xn, the events {∀t, ξ
xi
t ⊂ Bxi

(M)}(i = 1,2, . . . , n) are
independent since Bx1(M + 1), . . . ,Bxn(M + 1) are disjoint. Together with the translation
invariance, we have

Pp

λ (∀i ∀t, ξ
xi
t ⊂ Bxi

(M))=
n∏

i=1

Pp

λ (∀t, ξ
xi
t ⊂ Bxi

(M))

= [Pp

λ (∀t, ξ 0
t ⊂ B0(M))]n

≤ [Pp

λ (ξ 0 dies out)]n.

For ε > 0, take n0 such that [Pp

λ (ξ 0 dies out)]n0 < ε2/6. Also, by the translation invariance,
we have

Pp

λ (∃i ∃t, ξ
xi
t �⊂ Bxi

(M) and ξxi dies out) ≤ n · Pp

λ (∃t, ξ 0
t �⊂ B0(M) and ξ 0 dies out)

= n · [Pp

λ (ξ 0 dies out)− Pp

λ (∀t, ξ 0
t ⊂ B0(M))].

Furthermore, by (3.2) we can take M such that

Pp

λ (ξ 0 dies out)− Pp

λ (∀t, ξ 0
t ⊂ B0(M)) <

ε2

6n0
.

Together,

Pp

λ (ξ {x1,...,xn0 } dies out) <
ε2

3
.

Therefore, if we take r large enough such that �−r, r� ⊇ {x1, . . . , xn0}, then by the
monotonicity of the contact process, Pp

λ (ξ �−r,r� survives) > 1− ε2/3, as desired. �

Fix ε > 0. Fix r ≥ 1 which satisfies (3.1). For h ≥ 40000r and w ≥ 40000r , define
random set


L(h,w)

:= {x ∈ �−w,−w+ hi� : �−r, r� × 0 is joined to x × [0,∞) within �−w,w+ hi�}.

Hence 
L(h,w) is a subset of the left side of the box �−w,w + hi�. Similarly define

R(h,w) the subset of the right side. Define random set 
UL(h,w) the subset of the left
part of the up side as follows:


UL(h,w)

:= {x ∈ �−w+ hi, hi� : �−r, r� × 0 is joined to x × [0,∞) within �−w,w+ hi�}.

Similarly define 
UR(h,w) the subset of the right part. Set 
U(h,w) := 
UL(h,w) ∪

UR(h,w).
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Lemma 3.2 Let p < 1 and Pp

λ (ξ 0 survives) > 0. For any ε,N > 0, one of the following two
assertions must be true:
(1) There exist constants h,w with w = 4h, such that

Pp

λ (|
L(h,w)|> N) > 1− ε, Pp

λ (|
L(h,2w)|> N) > 1− ε. (3.3)

(2) There exist constants h,w with 8h≥w, such that

Pp

λ (|
UL(h,w)|> N) > 1− ε, Pp

λ (|
L(2h,w)|> N) > 1− ε. (3.4)

Proof Take wn = 2n and hn = 2w2
n . There are two properties of the sequence of boxes

�−wn,wn + hni�. First, all sites being joined with �−wn,wn + hni� are contained in
�−wn+1,wn+1+hn+1i�. Second, with large probability there are no edges being joined with
�−wn + hi,wn + hi� in C for some 1 < h < hn − 1 if n is large enough. By the second
property, there exists n0 such that

Pp

λ (
U(hn,wn)= ∅) > 1− ε2

3
(3.5)

for n > n0. If all the edges outside the box �−wn,wn + hni� and joined with 
L(hn,wn) ∪

R(hn,wn)∪
U(hn,wn) are closed, then ξ �−r,r� dies out at a finite time, since there are no
infected sites outside �−wn,wn + hni�. It implies that

Pp

λ

(
ξ �−r,r� dies out | |
L(hn,wn)∪
R(hn,wn)∪
U(hn,wn)| ≤ 2N

)≥ (1− p)2N+2.

By the first property of the sequence and the strong Markov property,

Pp

λ (∃n1,∀n > n1, |
L(hn,wn)∪
R(hn,wn)∪
U(hn,wn)|> 2N | ξ �−r,r� survives)= 1.

Hence there exists n1 > n0 such that for n > n1,

Pp

λ (|
L(hn,wn)∪
R(hn,wn)∪
U(hn,wn)|> 2N | ξ �−r,r� survives) > 1− ε2

3
. (3.6)

By (3.1), (3.5) and (3.6),

Pp

λ (|
L(hn,wn)∪
R(hn,wn)|> 2N) > 1− ε2.

Using the FKG inequality (see Theorem 2.4 of Grimmett [6]), we can get

ε2 ≥ Pp

λ (|
L(hn,wn)∪
R(hn,wn)| ≤ 2N)

≥ Pp

λ (|
L(hn,wn)| ≤N, |
R(hn,wn)| ≤N)

≥ Pp

λ (|
L(hn,wn)| ≤N)2.

Consequently,

Pp

λ (|
L(hn,wn)|> N) > 1− ε. (3.7)

Comparing (3.7) with (3.3), we see that hn is much larger than what we want. Hence we
reduce the height (such as hn/2k). Let k′n = w2

n − n + 2 and h′n = hn/2k′n for all n. Then
4h′n =wn. If

Pp

λ (|
L(h′n,wn)|> N) > 1− ε, Pp

λ (|
L(h′n,2wn)|> N) > 1− ε
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for some n, then (1) is true. Otherwise, one of the two following statements must be true:

(3) There exists a subsequence (ni) such that Pp

λ (|
L(h′ni
,wni

)|> N)≤ 1− ε.

(4) There exists a subsequence (ni) such that Pp

λ (|
L(h′ni
,2wni

)|> N)≤ 1− ε.

No matter which of the two statements is true, there exists a subsequence (ni) such that
Pp

λ (|
L(h′ni
,w′ni

)|> N)≤ 1− ε with 8h′ni
≥w′ni

. As a result, there exists 0≤ k ≤ k′ni
such

that

8h∗i ≥w∗i , Pp

λ (|
L(2h∗i ,w
∗
i )|> N) > 1− ε and Pp

λ (|
L(h∗i ,w
∗
i )|> N)≤ 1− ε,

(3.8)
where h∗i = hni

/2k+1,w∗i =w′ni
.

We conclude that

Pp

λ (|
U(h∗i∗ ,w
∗
i∗)|> 2N) > 1− ε2 (3.9)

for some i∗. In fact, if no such i∗ exists, then Pp

λ (|
U(h∗i ,w
∗
i )| > 2N) ≤ 1− ε2 for all i.

Use the FKG inequality again,

Pp

λ (|
L(h∗i ,w
∗
i )∪
R(h∗i ,w

∗
i )∪
U(h∗i ,w

∗
i )| ≤ 6N)

≥ Pp

λ (|
L(h∗i ,w
∗
i )| ≤ 2N, |
R(h∗i ,w

∗
i )| ≤ 2N, |
U(h∗i ,w

∗
i )| ≤ 2N)

≥ Pp

λ (|
L(h∗i ,w
∗
i )| ≤ 2N)Pp

λ (|
R(h∗i ,w
∗
i )| ≤ 2N)Pp

λ (|
U(h∗i ,w
∗
i )| ≤ 2N)≥ ε4.

However, h∗i tends to infinity as i→∞, which implies that there exists a strictly increasing
subsequence (h∗ij ) such that

Pp

λ (|
L(h∗ij ,w
∗
ij
)∪
R(h∗ij ,w

∗
ij
)∪
U(h∗ij ,w

∗
ij
)| ≤ 6N)≥ ε4.

It is impossible and the reason is similar to that of (3.6).
Let h∗ = h∗i∗ ,w

∗ =w∗i∗ . Then by (3.9),

Pp

λ (|
UL(h∗,w∗)|> N)= Pp

λ (|
UR(h∗,w∗)|> N) > 1− ε. (3.10)

So (2) is true. Then we have proved the lemma. �

In order to state our result concisely, we introduce a special notation 〈·, ·〉. For a, b,

c, d ∈ Z, define

〈a + bi, c+ d i〉

:=
{
{(u, v) ∈ E : u,v ∈ �a + bi, c+ d i�, {�(u),�(v)} �⊆ {a, c}}, if |a − c| ≥ 2|b− d|,
{(u, v) ∈ E : u,v ∈ �a + bi, c+ d i�, {�(u),�(v)} �⊆ {b, d}}, if 2|a − c| ≤ |b− d|.

Then 〈a + bi, c+ d i〉 is an edge set. See Fig. 6. Let E be the event that 0× 0 is joined to
every site of �−r + 4r i, r + 4r i� × 1 within 〈−r, r + 4r i〉. Fix N ≥ 20r log ε

log(1−Pp
λ (E))

+ 1 which

is large enough to ensure that in [N/20r] or more independent trials of an experiment with
success probability Pp

λ (E), the probability of obtaining at least one success exceeds 1− ε.
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Fig. 6 〈a + bi, c+ d i〉

Lemma 3.3 Suppose Pp

λ (|
R(h,w)|> N) > 1− ε. Then with Pp

λ -probability greater than
1−2ε, there exist x ∈ �w+4r,w+4r+hi� and t > 0, such that the horizontal seed (0×0)r

is joined to the vertical seed (x × t)r within 〈−w− 1,w+ 4r + hi〉.

Proof Let t1 be the first time that some site in �w+2r i,w+ (h−2r)i� is infected. Precisely,

t1 := inf{t : �−r, r� × 0 is joined to �w+ 2r i,w+ (h− 2r)i� × t within �−w,w+ hi�}.
If t1 <∞, then with probability 1 there exists a unique infected site x1 ∈ �w+2r i,w+ (h−
2r)i� such that �−r, r� × 0 is joined to x1 × t1 within �−w,w+ hi�. Generally, let tk be the
first time that some site in �w+ 2r i,w+ (h− 2r)i�\(⋃k−1

i=1 �xi − 3r i, xi + 3r i�) is infected,
and xk be the corresponding infected site if tk <∞. Denote by Ek the event that xk × tk is
joined to every site of �xk + 4r − r i, xk + 4r + r i� × (tk + 1) within 〈xk − r i, xk + 4r + r i〉.
If Ek occurs, then the horizontal seed (0 × 0)r is joined to the vertical seed (xk × tk)r

within 〈−w− 1,w+ 4r + hi〉. By the transitivity and the rotation invariance, we know that
(1Ek
|tk <∞) has the same distribution with 1E . Let

Yk =
{

1Ek
, if tk <∞,

an independent random variable with the distribution 1E, if tk =∞.

Then P(Yk = 1)= 1− P(Yk = 0)= Pp

λ (E).
By the strong Markov property and the translation invariance, Y1, Y2, . . . are independent

with respect to Pp

λ . If |
R(h,w)|> N , then t1 < · · ·< t[N/20r] <∞ almost surely. Directly
calculate

Pp

λ (some Ek occurs)≥ Pp

λ

([N/20r]∑

k=1

1Ek
≥ 1

)

≥ Pp

λ

(

|
R(h,w)|> N,

[N/20r]∑

k=1

Yk ≥ 1

)

≥ Pp

λ (|
R(h,w)|> N)+ Pp

λ

([N/20r]∑

k=1

Yk ≥ 1

)

− 1

≥ 1− 2ε.

So there exist x ∈ �w + 4r + 2r i,w + 4r + (h− 2r)i� and t > 0, such that the horizontal
seed (0× 0)r is joined to the vertical seed (x × t)r within 〈−w− 1,w+ 4r + hi〉 with Pp

λ -
probability greater than 1− 2ε. �
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Fig. 7 Construction of (1) through (2)

Remark Similar conclusion holds for 
L, 
UR and 
UL.

Lemma 3.4 Suppose p < 1 and Pp

λ (ξ 0 survives) > 0. Then for any ε > 0, there exist r ≥ 1
and h≥ 100r such that the following three assertions hold with Pp

λ -probability greater than
1− ε:

(i) the horizontal seed (0×0)r is joined to a vertical seed (x×t)r within 〈−4h− 1,w+ hi〉
for some 4h+ 4r ≤w < 4.0001h, �(x)=w and t > 0;

(ii) the horizontal seed (0×0)r is joined to a vertical seed (x×t)r within 〈−8h− 1,w+ hi〉
for some 8h+ 4r ≤w < 8.0001h, �(x)=w and t > 0;

(iii) the horizontal seed (0 × 0)r is joined to a vertical seed (x1 × t1)r within
〈−8h− 1,w1 + hi〉 for some 8h + 4r ≤ w1 < 8.0001h and t1 > 0; and the horizon-
tal seed (0× 0)r is joined to a vertical seed (x2 × t2)r within 〈−w2 + hi,8h+ 1〉 for
some 8h+ 4r ≤w2 < 8.0001h and t2 > 0.

Proof When p < 1 and Pp

λ (ξ 0 survives) > 0, either (1) or (2) of Lemma 3.2 is true. If (1)

is true, then by Lemma 3.3, (i) and (ii) hold. If (2) is true, we can prove the first two con-
clusions by iterating Lemma 3.3 and the remark below Lemma 3.3, see Fig. 7. Furthermore,
by (ii), the symmetric property and the FKG inequality, we can get (iii) in both cases. So we
have completed the proof of the lemma. �

We are going to introduce random variables ST , SS , LT and LS , together with S-boxes
and L-boxes.

For x, y ∈H, t > s > 0 and w ∈ �4h+ 4r, [4.0001h]�, let

(x × s)r

1,1,w−−→ (y × t)r

be the event that �(y − x) = w and �x − r, x + r� × s is joined within 〈x − 4h − 1,

x +w+ h〉 to z× t for all z ∈ �y − r i, y + r i�. Define random time

ST (x, s,1,1)= inf{t : ∃y, (x × s)r

1,1,w∗−−−→ (y × t)r},
where

w∗ = inf{w ∈ [4h+ 4r,4.0001h) : ∃z ∃u, (x × s)r

1,1,w−−→ (z× u)r}.
If such w∗ does not exist, then set ST (x, s,1,1) = ∞. If ST (x, s,1,1) < ∞, define

SS(x, s,1,1) taken value from {y : (x × s)r

1,1,w∗−−−→ (y × ST (x, s,1,1))r} in a certain way.
As a result, if ST (x, s,1,1) <∞, then (x × s)r is joined to (SS(x, s,1,1)× ST (x, s,1,1))r

within 〈x − 4h− 1, x +w∗ + hi〉, where w∗ = �(SS(x, s,1,1)) ∈ �4h+4r, [4.0001h]�. We
call such 〈x − 4h− 1, x +w∗ + hi〉 an S-box.
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Fig. 8 Orientations in S-boxes and L-boxes

Similarly define LT (x, t,1,1) and LS(x, t,1,1), so that if LT (x, s,1,1) < ∞, then
(x × s)r is joined within 〈x − 8h− 1, x +w∗ + hi〉 to (LS(x, s,1,1) × LT (x, s,1,1))r ,
where w∗ = �(LS(x, s,1,1)) ∈ �8h + 4r, [8.0001h]�. We call such 〈x − 8h − 1,

x +w∗ + hi〉 an L-box.
Similarly define SS(x, t, o, c), ST (x, t, o, c), LS(x, t, o, c), LT (x, t, o, c) for o ∈ {1, i},

c ∈ {1,−1}, see Fig. 8.
Lemmas 3.5 and 3.6 below show that SS,ST ,LS and LT can help us find restart processes

which are independent of the former process in the annealed law. They are crucial to Propo-
sition 4.1.

For A⊆H, G⊆ E and t > s, define (ξ
A,s,G
t , t ≥ s) on (�s,F ,Pλ) by

ξA,s,G
t = ξA,s,G

t (C)= {x :A× s is joined within G to x × t},
which is the contact process restricted on G starting at time s with initial state A. For y ∈H,
define

y +G := {(u+ y, v+ y) : (u, v) ∈G},
a shift of G. For y ∈H and u≥ 0, define process

ξ̃
y, G

t ◦ θu := ξ
�y−r i,y+r i�,u,y+G

t+u − y, ∀t ≥ 0.

Then ξ̃ y, G ◦ θu + y is the contact process restricted on (y +G) starting from time u with
initial state �y − r i, y + r i�. Write ξ̃

y, G

t = ξ̃
y, G

t ◦ θ0 for simplicity.

Lemma 3.5 Let G be an edge set and x ∈ H. Suppose (x + w + ai) + G ⊆ E shares no
edges with 〈x − 4h− 1, x +w+ hi〉 for all w ∈ �4h+ 4r, [4.0001h]� and a ∈ �0, hi�. Then

Pp

λ (S ∈A,T ∈ B, ξ̃ S,G ◦ θT ∈ C |T <∞)= Pp

λ (S ∈A,T ∈ B|T <∞)Pp

λ (ξ̃ x,G ∈ C)

provided the left side is meaningful, where S = SS(x,0,1,1), T = ST (x,0,1,1).
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Lemma 3.6 Let G−1 and G1 be two edge sets and x ∈H. Suppose (x +wi + ai i)+Gi ⊆ E

shares no edges with 〈x − 8ih− i, x + iwi + hi〉 and no endpoints with (−iw−i + a−i i +
G−i ) ∪ 〈x + 8ih+ i, x − iw−i + hi〉 for i ∈ {1,−1}, w1,w−1 ∈ �8h + 4r, [8.0001h]� and
a1, a−1 ∈ �0, hi�. Let S1 = SS(x,0,1,1), S−1 = SS(x,0,1,−1), T1 = ST (x,0,1,1) and
T−1 = ST (x,0,1,−1). Then

Pp

λ (S1 ∈A1, S−1 ∈A−1, T1 ∈ B1, T−1 ∈ B−1, ξ̃ S1,G1 ◦ θT1 ∈ C1,

ξ̃ S−1,G−1 ◦ θT−1 ∈ C−1|T1 <∞, T−1 <∞)

= Pp

λ (S1 ∈A1, S−1 ∈A−1, T1 ∈ B1, T−1 ∈ B−1|T1 <∞, T−1 <∞)Pp

λ ( ξ̃ x, G1 ∈ C1)

× Pp

λ ( ξ̃ x, G−1 ∈ C−1)

provided the left side is meaningful.

The proof of Lemmas 3.5 and 3.6 will be deferred to Appendix 1.

4 Construction of Integrated Boxes

We shall define a number of mappings in Sects. 4 and 5. Every mapping corresponds to an
algorithm. More precisely,

Åk : �x �→ Åk(�x),

where �x is the input and Åk(�x) is the output by Algorithm k. For each ε > 0, fix r = r(ε)

and h= h(ε) satisfying Lemma 3.4 henceforth. We always write M= 107 in this paper. For
x ∈H,m ∈ Z and n ∈ Z

+, define

Rm,n := �a +mMh+ nMhi, b+mMh+ nMhi� = �a, b� +Mh(m+ ni),

where a = 100h[�(x)/100h] + 100h[�(x)/100h]i and b = a + 100(1+ i). Then Rm,n is a
square and x ∈R0,0.

Suppose (x × s)r is a seed. We first introduce Algorithm 1, which is used to construct
a route by which the seed (x × s)r is joined to other seeds in R0,1 and R1,0 with large
probability, see Figs. 2 and 3 respectively.

Algorithm 1

0) Set i = 1, (y, t)= (x, s) and t1 = t2 =∞.
1) If ST (y, t, i,−1) <∞, then set (y, t) = (SS, ST )(y, t, i,−1) and i = i + 1. Otherwise

go to 17).
2) If ST (y, t,1,−1) <∞, then set (y, t)= (SS, ST )(x, s,1,−1) and i = i + 1. Otherwise

go to 17).
3) If y ∈ �a +Mhi+ 50h,a +Mhi+ 60h+ 90hi �, then go to 14).
4) If �(y)≥�(a)+ 30h, then go to 1).
5) If LT (y, t, i,−1) <∞, then set (y, t)= (LS,LT )(y, t, i,−1) and i = i + 1. Otherwise

go to 17).
6) If LT (y, t,1,1) <∞, then set (y, t)= (LS,LT )(y, t,1,1) and i = i + 1. Otherwise go

to 17).
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7) If ST (y, t, i,1) <∞, then set (y, t)= (SS, ST )(y, t, i,1) and i = i + 1. Otherwise go to
17).

8) If ST (y, t,1,1) <∞, then set (y, t)= (SS, ST )(y, t,1,1) and i = i + 1. Otherwise go
to 17).

9) If y ∈ �a +Mhi+ 40h,a +Mhi+ 50h+ 90hi�, then go to 15).
10) If �(y)≤�(a)+ 70h, then go to 7).
11) If LT (y, t, i,1) <∞, then set (y, t)= (LS,LT )(y, t, i,1) and i = i + 1. Otherwise go

to 17).
12) If LT (y, t,1,−1) <∞ then set (y, t)= (LS,LT )(y, t,1,−1) and i = i+ 1. Otherwise

go to 17).
13) Go to 1).
14) If LT (y, t, i,−1) <∞, set (y, t)= (LS,LT )(y, t, i,−1), i = i + 1, and go to 16). Oth-

erwise go to 17).
15) If LT (y, t, i,1) <∞, then set (y, t)= (LS,LT )(y, t, i,1) and i = i + 1. Otherwise go

to 17).
16) If LT (y, t,1,−1) + LT (y, t,1,1) < ∞, set (y1, t1) = (LS,LT )(y, t,1,−1) and

(y2, t2)= (LS,LT )(y, t,1,1).
17) Return t1, t2, y1, y2, i.

Here, (f, g)(y, t, o, c) = (f (y, t, o, c), g(y, t, o, c)). The idea of Algorithm 1 is as fol-
lows. Use S-boxes (horizontal and vertical boxes alternatively) to let the seed spread in the
northwest (‘↖’) direction. If the infection surpasses the line {y : �(y)=�(a)+ 30h}, then
use two L-boxes to change the spread into the northeast (‘↗’) direction. If the infection
surpasses the line {y : �(y)=�(a)+ 70h}, then use two L-boxes to change the spread into
the northwest direction. Iterate the procedure until R0,1 is infected. Then use two L-boxes
to get the two infected seeds we want. As a result, by the route given by Algorithm 1, the
vertical seed (x × s)r may be joined to two vertical seeds (y1 × t1)r and (y2 × t2)r , where
y1, y2 ∈R0,1. Note that the route lies in �a, b+Mh�.

Algorithm 1 must end with i < M. So t1 + t2 <∞ with large probability by Lem-
mas 3.4, 3.5 and 3.6. If t1 + t2 <∞, it generates two seeds as our requirement. Define
mapping

Åv
1(s, x, i) := (t1, t2, y1, y2).

Here ‘1’ corresponds to Algorithm 1, ‘v’ corresponds to that the seed at the initial state
is vertical, and ‘i’ corresponds to that the orientation of the infection is north (‘↑’). In
application we care little about the precise values of x, y1 and y2. Moreover, y1 and y2

are ‘almost’ determined by t1 and t2 respectively. Hence we omit the space parameters
and abuse the notation Åv

1(s, i)= (t1, t2). Similarly, we shall omit the space parameters for
Åi (i = 2, . . . ,6), which will be defined later.

Define mapping Åv
1(s,1) := (t ′1, t

′
2) similarly, see Fig. 3. A little difference is that

Åv
1(s0,1) generates two horizontal seeds (y ′1 × t ′1)r , (y

′
2 × t ′2)r with y1, y2 ∈ R1,0 and

�(y ′1 − y ′2) > 0. Define Åh
1 for the case that the seed at the initial state is horizontal in the

same way. In application we care little about whether the seed at the initial state is vertical
or horizontal, so we simply write Å1.

Next we introduce Algorithm 2. By the algorithm we construct integrated boxes to get a
route, as shown in Fig. 4. We may get some y, z ∈Rn,n and t, u <∞ by the route, such that
the seed (x × s)r is joined to the seeds (y × t)r and (z× u)r within �a, b+ nMh(1+ i)�.



The Complete Convergence Theorem Holds for Contact Processes 665

Algorithm 2

1) Set (t i
0,1, t

1
0,1)= Å1(s, x, i);

2) For 2≤ j ≤ n

set (t i
0,j , t

1
0,j )= Å1(t

i
0,j−1, i);

End
3) Set t i

j,0 =∞, j = 1, . . . , n;
4) For 1≤ i ≤ n

For 1≤ j ≤ n

set (t i
i,j , t

1
i,j )= Å1(t

1
i−1,j ,1)1{t1

i−1,j
<∞} + Å1(t

i
i,j−1, i)1{t1

i−1,j
=∞};

End
End

5) Return t i
n,n, t

1
n,n.

If t i
n,n+ t1

n,n <∞, then there exist y, z ∈Rn,n, such that the seed (x× s)r is joined to two
seeds (y × t i

n,n)r and (z× t1
n,n)r within �a, b+ nMh(1+ i)�. Define

ÅL(s, x,n,1+ i) := t i
n,n and ÅR(s, x,n,1+ i) := t1

n,n,

where 1+ i indicates that the orientation of infection is northeast.
Similarly we can define ÅL(s, x,n, o) = t1, ÅR(s, x,n, o) = t2 for o ∈ {1 − i,−1 +

i,−1− i}. If t1+ t2 <∞, then there exist x1, x2 ∈ �a, b�+nMho, such that the seed (x× s)r

is joined to two seeds (x1 × t1)r and (x2 × t2)r , and x, x1, x2 are arranged clockwise.
Having introduced Algorithms 1 and 2, we can state the main proposition in this section

now.

Proposition 4.1 Suppose p < 1 and Pp

λ (ξ 0 survives) > 0. Let x = x(ε) ∈ H with �(x) >

10h and (x × 0)r be a horizontal seed. Then there exists W > 0 which depends only on ε,p

and λ, such that

lim
ε→0+

lim inf
n→∞ Pp

λ

(
7W

6
n < ÅL(0, x, n,1+ i) <

11W

6
n

)

= 1

and

lim
ε→0+

lim inf
n→∞ Pp

λ

(
7W

6
n < ÅR(0, x, n,1+ i) <

11W

6
n

)

= 1.

Proposition 4.1 will be proved in Appendix 2. We only state the idea here. Algorithm 1
provides a route by which a seed in Rm,n is joined to other seeds in Rm+1,n and Rm,n+1 with
large probability. As a result, we use the renormalization method and consider each Rm,n as
one site. Declare R0,0 open if x ∈ R0,0 and (x × 0)r is a seed. For m+ n≥ 1, declare Rm,n

open if and only if

(i) Rm−1,n is open and the seed in Rm−1,n is joined to two seeds in Rm,n through Algo-
rithm 1, or

(ii) Rm−1,n is closed, Rm,n−1 is open and the seed in Rm,n−1 is joined to two seeds in Rm,n

through Algorithm 1.

Refer to Fig. 4. The process (Rm,n) is an oriented site percolation. Refer to Grimmett [6].
We can find a unique open path from R0,0 to Rn,n with large probability. Furthermore, we
can find the unique route constructed by S-boxes and L-boxes, within which the seed in R0,0
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Fig. 9 All S-boxes are disjoint

is joined to another two seeds in Rn,n. It implies that ÅL(ÅR) is the sum of the time spent in
each box. Figure 9, which describes the way how to get Å1(s, x, i), Å1(t

i
0,1, i) and Å1(t

1
0,1,1),

shows that all S-boxes used in Algorithm 2 are disjoint. So the times spent in each box are
independent under certain condition by Lemmas 3.5 and 3.6. Through rigorous calculation,
we get that the total number of S-boxes on the route is between 2njlower and 2njupper . Then
by the law of large numbers, the time spent in these S-boxes is almost between 7

6 Sn and
11
6 Sn. We can deduce that the time spent in these L-boxes is almost between 7

6Ln and 11
6 Ln,

too. Hence the total time ÅL(ÅR) is almost between 7
6 Wn and 11

6 Wn. Here jlower and jupper

are two constants which satisfy 1 ≤ jupper/jlower < 11
6 , and S,L,W depend only on p,λ

and ε.
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5 The Complete Convergence Theorem

In this section we shall prove the complete convergence theorem. When p = 1 the theorem
is already proved in Bezuidenhout & Grimmett [1]. Therefore, throughout this section we
suppose p < 1 and Pp

λ (ξ 0 survives) > 0. It is easy to prove that ξ
A\C∞
t converges weakly to

δ∅ for all A⊂H and almost all ω. Therefore, ξA and ξA∩C∞ have the same limit behavior.
Furthermore, by Theorem 1.12 of Liggett [10], to prove Theorem 1.1 it suffices to prove that
there exists �0 ⊆�b with Pp(�0)= 1 such that for all ω ∈�0,

(i) Pλ(x ∈ lim sup ξA
t (C))= Pλ(ξ

A(C) survives) for all x ∈ C∞ and A⊂ C∞;

(ii) liml→∞ lim inft→∞ Pλ(ξ
B0(l)
t (C)∩B0(l) �= ∅)= 1.

We shall prove (i) first. Fix A a nonempty finite subset of H. Let x0 be any element of
A and σ0 = 0. Hence x0 is infected at time σ0 during the process ξA. Define δk, τk, Yk, σk+1

and xk+1 inductively for k ≥ 0 as follows. Let

δk := sup{t : xk × σk is joined within 〈xk − r − 1, xk + r + 1+ 2000hi〉
to �xk − r − 1, xk + r + 1+ 2000hi� × t}

be the death time of ξ {xk}, σk ,〈xk−r−1,xk+r+1+2000hi〉. Then δk <∞ almost surely. Let

τk :=min{t − σk : xk × σk is joined within 〈xk − r − 1, xk + r + 1+ 2000hi〉
to z× t for all z ∈ �xk − r + 2000hi, xk + r + 2000hi�}

be the waiting time for the first seed on the top. Then Pp

λ (τk <∞|σk <∞) > 0, and σk +
τk < δk if τk <∞. Let

Yk := sup

{

�(x)+ 2 : x ∈
⋃

t≤δk

ξA
t

}

.

Hence Yk <∞ almost surely. Let

σk+1 := inf{t > δk : ∃x ∈ ξA
t , �(x)= Yk}

and xk+1 be the corresponding infected site.
{τk : k ≥ 0} are independent and identically distributed random variables conditioned on

σk <∞ for all k. Hence K :=min{k : τk <∞}<∞ almost surely conditioned on σk <∞
for all k. But ξA survives almost surely if and only if σk <∞ for all k, which means that

Pp

λ (K <∞| ξA survives)= 1. (5.1)

Therefore, (xK × τK)r is a horizontal seed. Let

ζ = ÅL(ÅL(ÅL(ÅL(τK, xK,m,1+ i),m,−1+ i),m,−1− i),m− 1,1− i),

and (ϑ × ζ )r be the corresponding seed if ζ <∞. Then

ϑ ∈R−1,1 ⊂ BxK
(2Mh).

Refer to Fig. 5. By Proposition 4.1 and the strong Markov property,

lim
ε→0+

lim inf
m→∞ Pp

λ (3Wm≤ ζ <∞|1{K<∞}, xK)= 1,
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which implies that

lim
ε→0+

lim inf
m→∞ Pp

λ (∃t ≥ 3Wm,ξA
t ∩BxK

(2Mh) �= ∅|1{K<∞}, xK)= 1.

By the dominated convergence theorem,

lim
ε→0+

Pp

λ

(
lim sup

t→∞
ξA
t ∩BxK

(2Mh) �= ∅|1{K<∞}, xK

)
= 1.

Furthermore,

lim
ε→0+

Pp

λ

(
lim sup

t→∞
ξA
t �= ∅|1{K<∞}

)
= 1. (5.2)

By (5.1) and (5.2),

Pp

λ

(
lim sup

t→∞
ξA
t �= ∅| ξA survives

)
= 1.

Therefore, there exists �A ⊆�b with Pp(�A)= 1, such that for all ω ∈�A,

Pλ

(
ξA(C) survives, and lim sup

t→∞
ξA
t (C)= ∅

)
= 0. (5.3)

That is to say, ξA(C) survives strongly if it survives. See p. 42 of Liggett [10] for the defini-
tion of strong survival.

Fix ω ∈ �A. Suppose lim supt→∞ ξA
t (C) �= ∅ and y ∈ lim supt→∞ ξA

t (C). Then y ∈ C∞
since contact process must die out on a finite set and C∞ is the unique infinite open cluster
of C . If z ∈ C∞, then there exists at least one open path from y to z in C∞. It implies that

Pλ(z ∈ ξ
y

1 (C)) > 0.

Since y ∈ lim supt→∞ ξA
t (C), we know by the strong Markov property that

Pλ

(
z ∈ lim sup

t→∞
ξA
t (C)|y ∈ lim sup

t→∞
ξA
t (C)

)
= 1.

By the arbitrariness of y,

Pλ

(
z ∈ lim sup

t→∞
ξA
t (C)| lim sup

t→∞
ξA
t (C) �= ∅

)
= 1. (5.4)

Together with (5.3) we can deduce that for a finite subset A⊆H, C ∈�A and z ∈ C∞,

Pλ

(
z ∈ lim sup

t→∞
ξA
t (C)| ξA(C) survives

)
= 1.

Now let �′0 =
⋂

n

⋂
A⊂H, |A|=n �A. Then Pp(�′0) = 1. Moreover, (i) holds for all

ω ∈�′0, A⊂ C∞ with |A|<∞.
Consider |A| = ∞. We can get that for n > 0, there exists mn such that for any B ⊂ H

with |B| ≥ mn, Pp

λ (ξB survives) > 1− 4−n by a reason similar to the proof Lemma 3.1. It
implies that

Pp({ω : Pλ(ξ
B(C) survives)≥ 1− 2−n})≥ 1− 2−n.



The Complete Convergence Theorem Holds for Contact Processes 669

Let �′n := {ω : Pλ(ξ
B(C) survives) ≥ 1 − 2−n} and �′′0 = �′0 ∩ lim infn→∞�′n. Then

Pp(�′′0) = 1. If ω ∈ �′′0 , A ⊂ C∞ and |A| = ∞, then let (An) be an increasing sequence
of finite sets which satisfy limn An =A and |An|> mn. Then for x ∈ C∞,

Pλ

(
x ∈ lim sup

t→∞
ξA
t (C)

)
≥ lim

n→∞Pλ

(
x ∈ lim sup

t→∞
ξAn
t (C)

)

= lim
n→∞Pλ

(
ξAn
t (C) survives

)

≥ lim
n→∞(1− 2−n)→ 1.

But ξA(C) survives with Pλ-probability one. So Pλ(x ∈ lim sup ξA
t (C)) = Pλ(ξ

A
t (C)

survives)= 1.
We have completed the proof of (i). We will next prove (ii). Before that we will define

two mappings

Å3 :R+ ×H×Z
+ × {1, i}→R+ and

Å4 :R+ ×H×Z
+ ×Z

+ × {1+ i,1− i,−1+ i,−1− i}→R+

through Algorithms 3 and 4 respectively. The behavior of Å4 is similar to Å2, and we do not
state too much here.

Suppose (x × s)r is a seed again.

Algorithm 3

0) Set t = s and y = x.
1) Set s ′ = s − 100Wn[s/100Wn], v = 8 · 1{s′≤37Wn} and u= 9− v. One can check that

s ′ + (6u+ 10v) ·
[

7

6
Wn,

11

6
Wn

]

⊆ [100Wn,200Wn).

Operate 2)∼7) u times
2) t = ÅR(t, n,1+ i);
3) t = ÅL(t, n,1− i);
4) t = ÅL(t, n,1+ i);
5) t = ÅL(t, n,−1+ i);
6) t = ÅR(t, n− 1,−1− i);
7) t = ÅR(t, n+ 1,−1+ i); Operate 8)∼17) v times
8) t = ÅR(t, n,1+ i);
9) t = ÅL(t, n,1− i);

10) t = ÅR(t, n,1+ i);
11) t = ÅL(t, n,1− i);
12) t = ÅL(t, n,1+ i);
13) t = ÅL(t, n,−1+ i);
14) t = ÅR(t, n− 1,−1− i);
15) t = ÅL(t, n,−1+ i);
16) t = ÅR(t, n,−1− i);
17) t = ÅR(t, n+ 1,−1+ i);
18) Return t .
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Fig. 10 Å3(s, x, n, i)

Refer to Fig. 10 for intuition. If t <∞, then the corresponding site belongs to R18(n+1),0.
Moreover, by Proposition 4.1 we know that t ∈ [100Wn,200Wn) with large probability if
s ∈ [0,100Wn). Define

Å3(s, x, n, i) := t.

Similarly define Å3(s, x, n,1) such that the corresponding site belongs to R0,18(n+1).

Algorithm 4

1) Set f0,1 = Å3(s, x, n, i);
2) For 2≤ j ≤m

set f0,j = Å3(f0,j−1, n, i);
End

3) Set fj,0 =∞, j = 1 . . .m;
4) For 1≤ i ≤m

For 1≤ j ≤m

set fi,j = Å3(fi−1,j , n,1)1{fi−1,j <∞} + Å3(fi,j−1, n, i)1{fi−1,j=∞};
End

End
5) Return fm,m.

If fm,m <∞, then the corresponding site belongs to R18(n+1)m,18(n+1)m. Define

Å4(s, x, n,m,1+ i)= fm,m.
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Similarly, define Å4(s, x, n,m,o) for o ∈ {1− i,−1+ i,−1− i}.

Proposition 5.1 Suppose p < 1 and Pp

λ (ξ 0 survives) > 0. Let x = x(ε) ∈ H with �(x) >

10h and (x × 0)r be a horizontal seed. Then

lim
ε→0+

lim inf
n→∞ lim inf

m→∞ Pp

λ (200Wnm < Å4(0, x, n,m,1+ i) < 200Wn(m+ 1))= 1.

Proof By Proposition 4.1 and the FKG inequality, we have that with large probability
{Å3(s, x, n, i), Å3(s, x, n,1)} ⊂ [100kWn,100(k+1)Wn) if s ∈ [100(k−1)Wn,100kWn).
Such (fi,j ) corresponds to a 1-dependent site percolation. Using the result of 1-dependent
site percolation (see Durrett [3]), we get the conclusion. �

Now we have finished the definition of Å4 and we can prove (ii). Suppose (x× 0)r is a
horizontal seed with �(x)≥ 10h. Let

μ := Å4(Å4(Å4(Å4(0, x, n,m,1+ i), n,m,−1+ i), n,m,−1− i), n,m− 1,1− i)

and (μ×ν)r be the corresponding seed if μ <∞. Then ν ∈ Bx(40nMh). By Proposition 5.1
and the strong Markov property,

lim
ε→0+

lim inf
n→∞ lim inf

m→∞ Pp

λ (800Wnm− 200Wn≤ μ≤ 800Wnm+ 600Wn)= 1.

That is,

lim
ε→0+

lim inf
n→∞ lim inf

m→∞ Pp

λ (∃t ∈ [800Wn(m− 1),800Wn(m+ 1)],

ξ
�x−r,x+r�
t ∩Bx(40nMh) �= ∅)= 1.

We can deduce that for δ > 0 there exist ε,n and m0, such that for all m≥m0 ≥ 2,

Pp

λ (∃t ∈ [800Wn(m− 1),800Wn(m+ 1)], ξ
�x−r,x+r�
t ∩Bx(40nMh) �= ∅) > 1− δ.

On the other hand, consider Richardson’s process (ζA
t ) on H with parameter λ (see Richard-

son [12]). Then (ζA
t ) stochastically dominates ξA

t (C) for every C . It is well known that there
exists αl > 0 with αl→ 0, such that for all l > 40nMh and A⊆H \B0(l),

P(∃0 < t < 800Wn(m0 + 1)+ 1, ζA
t ∩Bx(40nMh) �= ∅)≤ αl.

Choose l0 large enough so that αl0 < δ. Set

τ := inf{u≥ s − 1 : ξ �x−r,x+r�
u ∩B0(l0)= ∅}.

Then τ is a stopping time. For any A⊆H \B0(l0),

Pλ(∃0 < t < 800Wn(m0 + 1), ξ
�x−r,x+r�
t+s (C)∩Bx(40nMh) �= ∅|ξ �x−r,x+r�

τ (C)=A)

≤ P(∃0 < t < 800Wn(m0 + 1)+ 1, ζA
t ∩Bx(40nMh) �= ∅)

≤ δ.

Use the strong Markov property again,
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Pλ(∃0 < t < 800Wn(m0 + 1), ξ
�x−r,x+r�
t+s (C)∩Bx(40nMh) �= ∅, ξ �x−r,x+r�

u ∩B0(l0)= ∅
for some u ∈ [s − 1, s])
= Pλ(∃0 < t < 800Wn(m0 + 1), ξ

�x−r,x+r�
t+s (C)∩Bx(40nMh) �= ∅, τ ≤ s)

= Pλ(Pλ(∃0 < t < 800Wn(m0 + 1), ξ
�x−r,x+r�
t (C)∩Bx(40nMh) �= ∅|Fτ ); τ ≤ s)

= Pλ(Pλ(∃0 < t < 800Wn(m0 + 1), ξ
�x−r,x+r�
t (C)∩Bx(40nMh) �= ∅|ξ �x−r,x+r�

τ (C));
τ ≤ s)

≤ δPλ(τ ≤ s)

for s ≥ 1. That is,

Pλ(∃0 < t < 800Wn(m0 + 1), ξ
�x−r,x+r�
t+s (C)∩Bx(40nMh) �= ∅ | ξ �x−r,x+r�

u ∩B0(l0)= ∅
for some u ∈ [s − 1, s])≤ δ.

Therefore,

Pp

λ (ξ �x−r,x+r�
u ∩B0(l0) �= ∅ for all u ∈ [s − 1, s])
≥ Pp

λ (∃0 < t < 800Wn(m0 + 1), ξt+s(C)∩Bx(40nMh) �= ∅)
− Pp

λ (∃0 < t < 800Wn(m0 + 1), ξt+s(C)∩Bx(40nMh) �= ∅| ξ �x−r,x+r�
u ∩B0(l0)= ∅

for some u ∈ [s − 1, s])
≥ 1− 2δ.

Since ξ
A1
t ⊆ ξ

A2
t if A1 ⊆A2, we have

Pp

λ (ξB0(l)
s ∩B0(l) �= ∅ for s ∈ [t, t + 1])≥ 1− 2δ

for any l > l0 and t > 0. Therefore, for any n > 0, there exists ln such that

Pp

λ (ξB0(ln)
s ∩B0(ln) �= ∅ for s ∈ [t, t + 1])≥ 1− 4−n.

Let

�n,t := {ω : Pλ(ξ
B0(l)
s ∩B0(l) �= ∅ for s ∈ [t, t + 1])≥ 1− 2−n}.

Then Pp(�n,t )≥ 1− 2−n for all n and t . Let

�t := lim inf
n→∞ �n,t .

Then Pp(�t)= 1 for all t . Furthermore, let

�′′′0 :=
∞⋂

k=1

�k.

Then Pp(�′′′0 )= 1, and (ii) holds for all ω ∈�′′′0 .
Finally, set �0 :=�′′0 ∩�′′′0 . As a result, (i) and (ii) hold for all ω ∈�0.
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6 Concluding Remarks

Although we only study contact processes on open clusters of half space, our result contains
a weaker result for contact processes on open clusters of whole space. Recall p∗ the critical
value of the Bernoulli bond percolation model on Z

d × Z
+ in Sect. 1. Fix p > p∗. Let

λH
c := inf{λ : Pp

λ (ξ 0 survives) > 0}. Let D be open clusters generated by Bernoulli bond
percolation of Z

d+1 with parameter p. Obviously, λc(D)≤ λH
c almost surely.

Theorem 6.1 For λ > λH
c , the complete convergence theorem holds for contact processes

with parameter λ on almost all D.

Proof It is directly drawn from Theorem 1.1 and Theorem 1.12 of Liggett [10]. �

When p = 1, it is well known that λc(D) = λH
c , see [1]. Hence we have the following

problem, which we believe true. If it is true, then the complete convergence theorem holds
for supercritical contact process on almost all open clusters of whole space.

Problem 1 For p∗ < p < 1, does λc(D)= λH
c almost surely?

It is a pity that our method does not work for the whole plane. In the half plane case,
infected sites on the real line cannot infect any sites below. Together with the fact that the
chance of the existence of crossing from bottom to top of a box is small if the box is high
enough, we can get that the seed on the bottom, which is just on the real line, infects suf-
ficiently many sites on the left and the right sides almost surely if the process survives. As
a result, we can successfully use a seed to generate other two seeds and construct the two
restart processes which are independent of the former process in the annealed law. The rest
proof is routine, see [1, 6]. However, our method fails in the whole plane case. On whole
plane, infected sites on the real line can infect sites below. We cannot ensure that a seed on
the bottom of a box can infect sufficiently many sites on the left and right sides with high
probability, so that, we cannot find independent restart processes.

In this paper, we show that the complete convergence theorem holds for contact processes
on most subgraphs of Z

d × Z
+. But whether it is true for all subgraphs, which is more

interesting, is still unknown. Hence we propose the following problem.

Problem 2 Does the complete convergence theorem hold for any infinite connected graph
G which can be embedded in Z

d ×Z
+?
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Appendix 1: Proof of Lemmas 3.5 and 3.6

Proof of Lemma 3.5 Fix ω ∈ �b , w ∈ �4h + 4r, [4.0001h]� and a ∈ �0, hi�. Set s = x +
w+ ai. Define (Mt , t ≥ 0) to be a filtration:

Mt := σ
(
ξ �x−r,x+r�,0,〈x−4h−1,x+w+hi〉∪(s+G)
u : 0≤ u≤ t

)
.
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Then T ′ = T +∞ · 1{S �=s} is a Mt -stopping time, ξ̃
s,G
t ∈Mt and T · 1{T <∞, S=s} ∈MT ′ . By

the strong Markov property,

Pλ(T <∞, S = s, T ∈ B, ξ̃ S,G ◦ θT ∈ C)

= Eλ(Pλ(T <∞, S = s, T ∈ B, ξ̃ S,G ◦ θT ∈ C|MT ′))

= Eλ(Pλ(ξ̃
s,G ◦ θT ′ ∈ C|MT ′);T ∈ B,T <∞, S = s)

= Pλ(ξ̃
s,G ∈ C)Pλ(T ∈ B,T <∞, S = s),

where Eλ is the expectation corresponding to Pλ. The assumption that s + G and
〈x − 4h− 1, x +w+ hi〉 shares no edges implies

Ep(Pλ(ξ̃
s,G ∈ C)Pλ(T ∈ B,T <∞, S = s))= Pp

λ (ξ̃ s,G ∈ C)Pp

λ (T ∈ B,T <∞, S = s).

By the property of translation invariance,

Pp

λ (ξ̃ s,G ∈ C) = Ep(Pλ(ξ
�s−r i,s+r i�,0,s+G(C)− s ∈ C))

= Ep(Pλ(ξ
�x−r i,x+r i�,0,x+G(C − s + x)− x ∈ C))

= Ep(Pλ(ξ
�x−r i,x+r i�,0,x+G(C)− x ∈ C))

= Pp

λ (ξ̃ x,G ∈ C),

where Ep is the expectation corresponding to Pp . Therefore,

Pp

λ (T <∞, T ∈ B, S = s, ξ̃ S,G ◦ θT ∈ C)= Pp

λ (T <∞, T ∈ B, S = s, )Pp

λ (ξ̃ x,G ∈ C),

as desired. �

Proof of Lemma 3.6 Fix ω ∈�b , {w1,w−1} ⊂ �8h+ 4r, [8.0001h]� and {a1, a−1} ⊂ �0, hi�.
Set s1 = x +w1 + a1i and s−1 = x −w−1 + a−1i. Define (Mt , t ≥ 0) to be a filtration:

Mt := σ
(
ξ
�x−r,x+r�,0,〈x−w−1,x+w1+hi〉∪(s1+G1)∪(s−1+G−1)
u : 0≤ u≤ t

)
.

Then T ′1 = T1 +∞ · 1{S1 �=s1} and T ′−1 = T−1 +∞ · 1{S−1 �=s−1} are Mt -stopping time. Directly
calculate

Pλ(S1 = s1, T1 ∈ B1 ∩ [0,∞), ξ̃ S1,G1 ◦ θT1 ∈ C1,

S−1 = s−1, T−1 ∈ B−1 ∩ [0,∞), ξ̃ S−1,G−1 ◦ θT−1 ∈ C−1, T1 < T−1)

= Eλ(Pλ(S1 = s1, T1 ∈ B1 ∩ [0,∞), ξ̃ s1,G1 ◦ θT1 ∈ C1,

S−1 = s−1, T−1 ∈ B−1 ∩ [0,∞), ξ̃ S−1,G−1 ◦ θT−1 ∈ C−1, T
′

1 < T ′−1|MT ′1))

= Eλ(Pλ(S−1 = s−1, T−1 ∈ B−1 ∩ [0,∞), ξ̃ s1,G1 ◦ θT1 ∈ C1,

ξ̃ S−1,G−1 ◦ θT−1 ∈ C−1|MT ′1);S1 = s1, T1 ∈ B1 ∩ [0,∞), T1 < T ′−1)

= Eλ(PD
λ (S−1 = s−1, T−1 ∈ B−1 ∩ [0,∞), ξ̃ s1,G1 ∈ C1, ξ̃ S−1,G−1 ◦ θT−1 ∈ C−1);

S1 = s1, T1 ∈ B1 ∩ [0,∞), T1 < T−1)
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= Eλ(P
D−1∪�s1−r i,s1+r i�
λ (S−1 = s−1, T−1 ∈ B−1 ∩ [0,∞), ξ̃ s1,G1 ∈ C1,

ξ̃ S−1,G−1 ◦ θT−1 ∈ C−1);S1 = s1, T1 ∈ B1 ∩ [0,∞), T1 < T−1)

= Eλ(P
D−1
λ (S−1 = s−1, T−1 ∈ B−1 ∩ [0,∞), ξ̃ S−1,G−1 ◦ θT−1 ∈ C−1)

× P�s1−r i,s1+r i�
λ ( ξ̃ s1,G1 ∈ C1);S1 = s1, T1 ∈ B1 ∩ [0,∞), T1 < T−1)

= Eλ(Pλ(S−1 = s−1, T−1 ∈ B−1 ∩ [0,∞), ξ̃ S−1,G−1 ◦ θT−1 ∈ C−1|MT ′1);
S1 = s1, T1 ∈ B1 ∩ [0,∞), T1 < T−1)P

�s1−r i,s1+r i�
λ ( ξ̃ s1,G1 ∈ C1)

= Pλ(S−1 = s−1, T−1 ∈ B−1 ∩ [0,∞), ξ̃ S−1,G−1 ◦ θT−1 ∈ C−1,

S1 = s1, T1 ∈ B1 ∩ [0,∞), T1 < T−1)P
�s1−r i,s1+r i�
λ ( ξ̃ s1,G1 ∈ C1)

= Eλ(Pλ(S−1 = s−1, T−1 ∈ B−1 ∩ [0,∞), ξ̃ S−1,G−1 ◦ θT−1 ∈ C−1,

= S1s1, T1 ∈ B1 ∩ [0,∞), T1 < T−1|MT ′−1
))P�s1−r i,s1+r i�

λ ( ξ̃ s1,G1 ∈ C1)

= Pλ(S−1 = s−1, T−1 ∈ B−1 ∩ [0,∞), S1 = s1, T1 ∈ B1 ∩ [0,∞), T1 < T−1)

× P�s1−r i,s1+r i�
λ ( ξ̃ s1,G1 ∈ C1)P

�s−1−r i,s−1+r i�
λ ( ξ̃ s−1,G−1 ∈ C−1),

where PA
λ = Pλ ◦ (ξA)−1 is the probability measure induced by ξA for A⊆H and

D = ξ
�−r,r�,0,〈x−w−1,x+w1+hi〉∪(s1+G1)∪(s−1+G−1)

T1
, D−1 = ξ

�−r,r�,0,〈x−w−1,x+8h+hi〉
T1

;

the third and the last equalities are based on the strong Markov property; the fourth equality
holds since

ξD = ξD−1 ∪ ξ �s1−r i,s1+r i� ∪ ξD\(D−1∪�s1−r i,s1+r i�);
and the fifth equality holds since (s1 + G1) shares no endpoints with (s−1 + G−1) ∪
〈x −w−1, x + 8h+ 1+ hi〉.

We omit the rest of the proof since it is parallel to that of Lemma 3.5. �

Appendix 2: Proof of Proposition 4.1

We need more preparations. By our construction and the symmetric property, ÅL(0, x, n,

1+ i) and ÅR(0, x, n,1+ i) have the same distribution. So we only need to prove

lim
ε→0+

lim inf
n→∞ Pp

λ

(
7W

6
n < ÅL(0, x, n,1+ i) <

11W

6
n

)

= 1.

We shall introduce a random variable s i
n,n. It has the same distribution with ÅL(0, x, n,1+ i)

and is the sum of a sequence of independent and identically distributed random variables
with finite means conditioned on some large probability event. The random variable s i

n,n is
constructed by Algorithms 5 and 6, which are similar to Algorithms 1 and 2. Define random
variables SBk,LBk,TBk and random vectors Sk = (Sk(1), Sk(2)), Lk = (Lk(1),Lk(2)), Tk =
(Tk(1), Tk(2), Tk(3), Tk(4)) for k ≥ 0 as follows:
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P(SBk = 1) = 1− P(SBk = 0)= Pp

λ (ST (0,0,1,1) <∞);
P(LBk = 1) = 1− P(LBk = 0)= Pp

λ (LT (0,0,1,1) <∞);
P(TBk = 1) = 1− P(TBk = 0)= Pp

λ (LT (0,0,1,1)+LT (0,0,1,−1) <∞);
P(Sk ∈ · ) = Pp

λ ((ST (0,0,1,1), SS(0,0,1,1)) ∈ · | ST (0,0,1,1) <∞);
P(Lk ∈ · ) = Pp

λ ((LT (0,0,1,1),LS(0,0,1,1)) ∈ · | LT (0,0,1,1) <∞);
P(Tk ∈ · ) = Pp

λ ((LT (0,0,1,1),LT (0,0,1,−1),LS(0,0,1,1),LS(0,0,1,−1))

∈ · | LT (0,0,1,1)+LT (0,0,1,−1) <∞).

Let all SBk,LBk,TBk, Sk,Lk and Tk for k ≥ 0 be independent.
Now give j0, k0, n0 ∈ Z

+, then we have the following algorithm.

Algorithm 5

0) Set j = j0, k = k0, (t, y)= (s, x) and t1 = t2 =∞.
1) If SBj = 1, then set (t, y) = (Sj (1) + t, ei π2 Sj (2) + y) and j = j + 1. Otherwise go

to 17).
2) If SBj = 1, then set (t, y)= (Sj (1)+ t,−Sj (2)+y) and j = j+1. Otherwise go to 17).
3) If y ∈ �a +Mhi+ 50h,a +Mhi+ 60h+ 90hi�, then go to 14).
4) If �(y)≥�(a)+ 30h, then go to 1).
5) If LBk = 1, then set (t, y) = (Lk(1) + t,Lk(2)ei π2 + y) and k = k + 1. Otherwise go

to 17).
6) If LBk = 1, then set (t, y)= (Lk(1)+ t,Lk(2)+ y) and k = k+ 1. Otherwise go to 17).
7) If SBj = 1, then set (t, y) = (Sj (1) + t, Sj (2)ei π2 + y) and j = j + 1. Otherwise go

to 17).
8) If SBj = 1, then set (t, y)= (Sj (1)+ t, Sj (2)+ y) and j = j + 1. Otherwise go to 17).
9) If y ∈ �a +Mhi+ 40h,a +Mhi+ 50h+ 90hi�, then go to 15).

10) If �(y)≤�(a)+ 70h, then go to 7).
11) If LBk = 1, then set (t, y) = (Lk(1) + t,Lk(2)ei π2 + y) and k = k + 1. Otherwise go

to 17).
12) If LBk = 1, then set (t, y) = (Lk(1) + t,−Lk(2) + y) and k = k + 1. Otherwise go

to 17).
13) Go to 1).
14) If LBk = 1, set (t, y)= (Lk(1)+ t,Lk(2)ei π2 + y) , k = k+ 1 and go to 16). Otherwise

go to 17).
15) If LBk = 1, set (t, y)= (Lk(1)+ t,Lk(2)ei π2 + y) and k = k+ 1. Otherwise go to 17).
16) If TBn0 = 1, then set (t1, t2, y1, y2)= Tn0 + (t, t, y, y).
17) Return t1, t2, y1, y2, j, k.

If t1 + t2 <∞, we crudely calculate and get klower ≤ k − k0 ≤ kupper , jlower ≤ j − j0 ≤
jupper , where

kupper = 5.0001× (M+ 200)

80
, klower = M

5× 5.0001
,

(C.1)
jupper = M+ 200− 4klower

2
, jlower = 2M− 9.0001kupper

5.0001
.
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Our choice of M= 107 ensures that kupper
klower

< 11
7 , jupper

jlower
< 11

7 . Define Åv
5(s, x, j0, k0, n0, i)=

(t1, t2, y1, y2, j, k). By Lemmas 3.5 and 3.6, one can get that (t1, t2, y1, y2) and Åv
1(s, x, i)

have the same distribution.
Similarly, we omit the space parameters and abuse the notation Åv

5(s, j0, k0, n0, o) =
(t1, t2, j, k). As before, we use Å5 to stand for Åv

5 and Åh
5 without distinguishing.

Algorithm 6

1) Set (s i
0,1, s

1
0,1, j0,1, k0,1)= Å5(0, x,0,0,0, i), f = 0, U0,0 = 0;

2) For 2≤ l ≤ n

set f = f + 1;
set U0,l = f ;
set (s i

0,l , s
1
0,l , j0,l , k0,l )= Å5(s

i
0,l−1,Mf,Mf,Mf, i);

End
3) Set t i

j,0 =∞, l = 1, . . . , n

4) For 1≤ i ≤ n

For 1≤ l ≤ n

set f = f + 1;
set Ui,l = f ;
set (s i

i,l , s
1
i,l , ji,l , ki,l)= Å5(s

1
i−1,l ,Mf,Mf,Mf,1)1{s1

i−1,l
<∞}

+ Å5(s
i
i,l−1,Mf,Mf,Mf, i)1{s1

i−1,l
=∞};

End
End

5) Return (s i
i,l , s

1
i,l , ji,l , ki,l ,Ui,l : 1≤ i ≤ n,1≤ l ≤ n).

By Lemmas 3.5 and 3.6, s i
n,n has the same distribution as ÅL(0, x, n,1+ i). The matrices

(Ui,l) are determined, which will be used later. Before the proof of Proposition 4.1 we need
the following lemma.

Lemma A.1 Let X,X1,X2, . . . be independent and identically distributed random ele-
ments. Let Fn be a σ -field, Fn ⊇ σ {X1, . . . ,Xn} and Xn+1 is independent of Fn. Let T

be an Fn-stopping time and T < M , where M is a fixed positive integer. Let f (x) be a
function satisfying f (x) > x for all x. Then (X1, . . . ,XM) has the same distribution as
(X1, . . . ,XT ,Xf (T ), . . . ,Xf (T )+M−T−1).

Proof For any sets A1, . . . ,AM ∈ σ(X),

P(X1 ∈A1, . . . ,XT ∈AT ,Xf (T ) ∈AT+1, . . . ,Xf (T )+M−T−1 ∈AM)

= E(P(X1 ∈A1, . . . ,XT ∈AT ,Xf (T ) ∈AT+1, . . . ,Xf (T )+M−T−1 ∈AM |FT ))

= E(P(Xf (T ) ∈AT+1, . . . ,Xf (T )+M−T−1 ∈AM |FT );X1 ∈A1, . . . ,XT ∈AT )

= E

(
M∏

i=T+1

P(X ∈Ai);X1 ∈A1, . . . ,XT ∈AT

)

= E(P(XT+1 ∈AT+1, . . . ,XM ∈AM |FT );X1 ∈A1, . . . ,XT ∈AT )

= P(X1 ∈A1, . . . ,XM ∈AM).

We complete the proof of the lemma. �
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Proof of Proposition 4.1 Since ÅL(0, x, n,1+ i) has the same distribution as s i
n,n, we need

only estimate s i
n,n. Generate a labeled graph C′ of H in the following way: i + j i is an open

site of C′ if and only if SBk = LBk = TBk = 1 for all MUi,j ≤ k < M(Ui,j + 1). We say that
a1 ∼ · · · ∼ an is an open path of C′ if ai ∈ C′ and ai+1 − ai ∈ {1, i}. Set An be the event that
there exists an open path from (0,0) to (n,n) in C′. Obviously, if An occurs then s i

n,n <∞.
Moreover, on An, there exists a unique open path 0= P0 ∼ · · · ∼ Pm ∼ · · · ∼ P2n = n+ ni
which satisfies

(s i
Pm

, s1
Pm

, jPm, kPm)= Å5(s
Pm−Pm−1
Pm−1

,MUPm,MUPm,MUPm,Pm − Pm−1)

for 0≤m≤ 2n. Here we set P−1 =−i, and do not distinguish Pm with (i, j) if Pm = i + j i.
Furthermore,

s i
n,n =

2n∑

m=0

(
jPm−1∑

h=MUPm

Sh(1)+
kPm−1∑

h=MUPm

Lh(1)+ TMUPm
(∗)

)

,

where ∗ determined by (Pm) is equal to 1 or 2. Actually, Pm1An is a measurable variable with
respect to E∞ = σ {SBm,LBm,TBm : m ≥ 0}. Let Sm := σ {Sh : 0 ≤ h ≤ m} , Lm := σ {Lh :
0≤ h≤m} and Tm := σ {Th : 0≤ h≤m}. Then jPm − 1 is an Hh-stopping time conditioned
on E∞, L∞ and T∞. Let

(Ŝ1, Ŝ2, . . .) := (SMUP0
, . . . , SjP0−1, SMUP1

, . . . , SjP1−1, . . . , SMUP2n
, . . . , SjP2n

−1, SjP2n
,

· · · |E∞, L∞, T∞).

Then by Lemmas 3.5, 3.6 and our construction ensuring that all S-boxes are disjoint,
(Ŝ1, Ŝ2, . . .) has the same distribution with (S1, S2, . . .). Refer to Fig. 9. Now on An, we
write a =∑2n

m=0(jPm −MUPm). By (A.1), there exist a1 and a2 which depend on M only,
such that a1n < a < a2n with a2

a1
< 11

7 . As a result,

P

(
2n∑

m=0

jPm−1∑

h=MUPm

Sh(1) >
11

6
Sn or

2n∑

m=0

jPm−1∑

h=MUPm

Sh(1) <
7

6
Sn;An

)

= E

(

E

(
2n∑

m=0

jPm−1∑

h=MUPm

Sh(1) >
11

6
Sn or

2n∑

m=0

jPm−1∑

h=MUPm

Sh(1) <
7

6
Sn|E∞,L∞,T∞

)

;An

)

≤ E

(

E

(
a2n∑

h=1

Ŝh(1) >
11

6
Sn or

a1n∑

h=1

Ŝh(1) <
7

6
Sn

)

;An

)

≤ P

(
a2n∑

h=1

Ŝh(1) >
11

6
Sn

)

+ P

(
a1n∑

h=1

Ŝh(1) <
7

6
Sn

)

,

where S = 3(
a2
11 + a1

7 )E(S0(1)). Furthermore, the probability above converges to zero as n

goes to infinity by the central limit theorem. Similarly, there exist L and T which depend
only on M, E(L0(1)) and E(T0(1)), such that
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P

(
2n∑

m=0

kPm−1∑

h=MUPm

Lh(1) >
11

6
Ln or

2n∑

m=0

kPm−1∑

h=MUPm

Lh(1) <
7

6
Ln

)

→ 0;

P

(
2n∑

m=0

TMUPm
(∗) >

11

6
T n or

2n∑

m=0

TMUPm
(∗) <

7

6
T n

)

→ 0.

Finally, set W = S +L+ T . Then W > 0 and

lim inf
n→∞ P

(
7

6
Wn < s i

n,n <
11

6
Wn

)

≥ lim inf
n→∞ P(An)− lim

n→∞P
(

s i
n,n >

11

6
Wn or s i

n,n <
7

6
Wn;An

)

= lim inf
n→∞ P(An).

But C′ can be seen as an oriented site percolation with parameter [P(SB1 = 1)]M[P(LB1 =
1)]M[P(TB1 = 1)]M. By Lemma 3.4 we know that

lim
ε→0+
[P(SB1 = 1)]M[P(LB1 = 1)]M[P(TB1 = 1)]M = 1,

which implies that

lim
ε→0+

lim inf
n→∞ P(An)= 1.

For more details about oriented site percolation one can refer to Durrett [3]. Therefore,

lim
ε→0+

lim inf
n→∞ P

(
7

6
Wn < s i

n,n <
11

6
Wn

)

= 1.

We have completed the proof of the proposition. �
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